Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
1.
Virology ; 595: 110088, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38643657

RESUMO

Human norovirus (HuNoV), a primary cause of non-bacterial gastroenteritis, currently lacks approved treatment. RdRp is vital for virus replication, making it an attractive target for therapeutic intervention. By application of structure-based virtual screening procedure, we present CX-6258 hydrochloride hydrate as a potent RdRp non-nucleoside inhibitor, effectively inhibiting HuNoV RdRp activity with an IC50 of 3.61 µM. Importantly, this compound inhibits viral replication in cell culture, with an EC50 of 0.88 µM. In vitro binding assay validate that CX-6258 hydrochloride hydrate binds to RdRp through interaction with the "B-site" binding pocket. Interestingly, CX-6258-contacting residues such as R392, Q439, and Q414 are highly conserved among major norovirus GI and GII variants, suggesting that it may be a general inhibitor of norovirus RdRp. Given that CX-6258 hydrochloride hydrate is already utilized as an orally efficacious pan-Pim kinase inhibitor, it may serve as a potential lead compound in the effort to control HuNoV infections.

2.
RSC Adv ; 14(12): 8260-8263, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38469195

RESUMO

A new linear thiopeptide, bernitrilecin (1), was isolated from Streptomyces sp. CPCC 203702. Compound 1 is the first example of a nitrile-bearing thiopeptide. Its structure and absolute configuration were elucidated by extensive analysis of spectroscopic data and Marfey's method. The biosynthesis of the nitrile unit for 1 was proposed to be through oxidations, decarboxylation, and dehydration. Compound 1 exhibited significant anti-influenza A virus activity with the IC50 value of 16.7 µM.

3.
Bioorg Med Chem ; 103: 117682, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38493729

RESUMO

Zika virus (ZIKV) disease has been given attention due to the risk of congenital microcephaly and neurodevelopmental disorders after ZIKV infection in pregnancy, but no vaccine or antiviral drug is available. Based on a previously reported ZIKV inhibitor ZK22, a series of novel 1-aryl-4-arylmethylpiperazine derivatives was designed, synthesized, and investigated for antiviral activity by quantify cellular ZIKV RNA amount using RT-qPCR method in ZIKV-infected human venous endothelial cells (HUVECs) assay. Structure-activity relationship (SAR) analysis demonstrated that anti-ZIKV activity of 1-aryl-4-arylmethylpiperazine derivatives is not correlated with molecular hydrophobicity, multiple new derivatives with pyridine group to replace the benzonitrile moiety of ZK22 showed stronger antiviral activity, higher ligand lipophilicity efficiency as well as lower cytotoxicity. Two active compounds 13 and 33 were further identified as novel ZIKV entry inhibitors with the potential of oral available. Moreover, both ZK22 and newly active derivatives also possess of obvious inhibition on the viral replication of coronavirus and influenza A virus at low micromolar level. In summary, this work provided better candidates of ZIKV inhibitor for preclinical study and revealed the promise of 1-aryl-4-arylmethylpiperazine chemotype in the development of broad-spectrum antiviral agents.


Assuntos
Infecção por Zika virus , Zika virus , Feminino , Humanos , Gravidez , Antivirais/farmacologia , Antivirais/uso terapêutico , Células Endoteliais , Replicação Viral , Infecção por Zika virus/tratamento farmacológico , Piperazinas/química , Piperazinas/farmacologia
4.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38514186

RESUMO

Human papillomavirus (HPV) infections account for several human cancers. There is an urgent need to develop therapeutic vaccines for targeting preexisting high-risk HPV (such as HPV 16 and 18) infections and lesions, which are insensitive to preventative vaccines. In this study, we developed a lipid nanoparticle-formulated mRNA-based HPV therapeutic vaccine (mHTV), mHTV-02, targeting the E6/E7 of HPV16 and HPV-18. mHTV-02 dramatically induced antigen-specific cellular immune response and robust memory T-cell immunity in mice, besides significant CD8+ T-cell infiltration and cytotoxicity in TC-1 tumors expressing HPV E6/E7, resulting in tumor regression and prolonged survival in mice. Moreover, evaluation of routes of administration found that intramuscular or intratumoral injection of mHTV-02 displayed significant therapeutic effects. In contrast, intravenous delivery of the vaccine barely showed any benefit in reducing tumor size or improving animal survival. These data together support mHTV-02 as a candidate therapeutic mRNA vaccine via specific administration routes for treating malignancies caused by HPV16 or HPV18 infections.


Assuntos
Neoplasias , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Camundongos , Animais , Humanos , Vacinas de mRNA , Infecções por Papillomavirus/prevenção & controle , Proteínas E7 de Papillomavirus/genética , Neoplasias/terapia , Vacinas contra Papillomavirus/genética
5.
Virology ; 589: 109939, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979208

RESUMO

Zika virus (ZIKV) belongs to Flaviviridae, the Flavivirus genus. Its infection causes congenital brain abnormalities and Guillain-Barré syndrome. However, there are no effective vaccines, no FDA-approved drugs to manage ZIKV infection. The non-structural protein NS5 of ZIKV has been recognized as a valuable target of antivirals because of its RNA-dependent RNA polymerase (RdRp) and methyltransferase (MTase) activities essential for viral RNA synthesis. Here, we report a cell-based assay for discovering inhibitors of ZIKV NS5 and found that 5-Azacytidine potently inhibits ZIKV NS5, with EC50 of 4.9 µM. Furthermore, 5-Azacytidine suppresses ZIKV replication by inhibiting NS5-mediated viral RNA transcription. Therefore, we have developed a cell-based ZIKV NS5 assay which can be deployed to discover ZIKV NS5 inhibitors and demonstrated the potential of 5-Azacytidine for further development as a ZIKV NS5 inhibitor.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Zika virus/genética , Infecção por Zika virus/tratamento farmacológico , Antivirais/química , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Azacitidina/farmacologia , Azacitidina/metabolismo , Azacitidina/uso terapêutico , Replicação Viral
6.
Commun Biol ; 6(1): 1195, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001377

RESUMO

Type VI secretion systems (T6SSs) deliver effectors into target cells. Besides structural and effector proteins, many other proteins, such as adaptors, co-effectors and accessory proteins, are involved in this process. MIX domains can assist in the delivery of T6SS effectors when encoded as a stand-alone gene or fused at the N-terminal of the effector. However, whether there are other conserved domains exhibiting similar encoding forms to MIX in T6SS remains obscure. Here, we scanned publicly available bacterial genomes and established a database which include 130,825 T6SS vgrG loci from 45,041 bacterial genomes. Based on this database, we revealed six domain families encoded within vgrG loci, which are either fused at the C-terminus of VgrG/N-terminus of T6SS toxin or encoded by an independent gene. Among them, DUF2345 was further validated and shown to be indispensable for the T6SS effector delivery and LysM was confirmed to assist the interaction between VgrG and the corresponding effector. Together, our results implied that these widely distributed domain families with similar genetic configurations may be required for the T6SS effector recruitment process.


Assuntos
Sistemas de Secreção Tipo VI , Humanos , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
7.
iScience ; 26(10): 107968, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37810251

RESUMO

Long interspersed element 1 (LINE-1) is the only currently known active autonomous transposon in humans, and its retrotransposition may cause deleterious effects on the structure and function of host cell genomes and result in sporadic genetic diseases. Host cells therefore developed defense strategies to restrict LINE-1 mobilization. In this study, we demonstrated that IFN-inducible Schlafen5 (SLFN5) inhibits LINE-1 retrotransposition. Mechanistic studies revealed that SLFN5 interrupts LINE-1 ribonucleoprotein particle (RNP) formation, thus diminishing nuclear entry of the LINE-1 RNA template and subsequent LINE-1 cDNA production. The ability of SLFN5 to bind to LINE-1 RNA and the involvement of the helicase domain of SLFN5 in its inhibitory activity suggest a mechanism that SLFN5 binds to LINE-1 RNA followed by dissociation of ORF1p through its helicase activity, resulting in impaired RNP formation. These data highlight a new mechanism of host cells to restrict LINE-1 mobilization.

8.
J Antibiot (Tokyo) ; 76(10): 613-617, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37402885

RESUMO

There are six new phthalide derivatives Verbalide A ~ F (1-6) together with another known derivative (7) isolated from the endophytic fungus Preussia sp. CPCC 400972. Their structures were established by comprehensive spectroscopic analyses, including NMR and HRESIMS. In addition, compounds 1-7 exhibited excellent inhibitory effect against influenza A virus.


Assuntos
Ascomicetos , Benzofuranos , Estrutura Molecular , Ascomicetos/química , Benzofuranos/farmacologia , Benzofuranos/química , Espectroscopia de Ressonância Magnética
9.
EMBO Rep ; 24(9): e56512, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37437058

RESUMO

Long interspersed element 1 (LINE-1) is the only active autonomous mobile element in the human genome. Its transposition can exert deleterious effects on the structure and function of the host genome and cause sporadic genetic diseases. Tight control of LINE-1 mobilization by the host is crucial for genetic stability. In this study, we report that MOV10 recruits the main decapping enzyme DCP2 to LINE-1 RNA and forms a complex of MOV10, DCP2, and LINE-1 RNP, exhibiting liquid-liquid phase separation (LLPS) properties. DCP2 cooperates with MOV10 to decap LINE-1 RNA, which causes degradation of LINE-1 RNA and thus reduces LINE-1 retrotransposition. We here identify DCP2 as one of the key effector proteins determining LINE-1 replication, and elucidate an LLPS mechanism that facilitates the anti-LINE-1 action of MOV10 and DCP2.


Assuntos
Grânulos Citoplasmáticos , RNA Helicases , Humanos , Grânulos Citoplasmáticos/metabolismo , Endorribonucleases/genética , Elementos Nucleotídeos Longos e Dispersos , RNA/metabolismo , RNA Helicases/metabolismo
10.
ACS Omega ; 8(23): 21254-21264, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37332774

RESUMO

LC-MS/MS-based molecular networking annotation coupled 1H NMR detection allowed the depiction of the soft coral Clavularia viridis to produce a profile of dolabellane-type diterpenoids. Chromatographic separation of the EtOAc fraction resulted in the isolation of 12 undescribed dolabellane-type diterpenoids, namely, clavirolides J-U (1-12). Their structures were characterized by the extensive analysis of the spectroscopic data, including the calculated ECD and X-ray diffraction for the configurational assignments. Clavirolides J-K are characterized by a 1,11- and 5,9-fused tricyclic tetradecane scaffold fused with a α,ß-unsaturated-δ-lactone, and clavirolide L possesses a 1,11- and 3,5-fused tricyclic tetradecane scaffold, which extend the dolabellane-type scaffolds. Clavirolides L and G showed significant inhibition against HIV-1 without RT enzyme inhibition, providing additional non-nucleosides with different mechanisms from efavirenz.

11.
J Nat Prod ; 86(7): 1815-1823, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37336771

RESUMO

Triterpenoids are a large and medicinally important group of natural products with a wide range of biological and pharmacological effects. Among them, malabaricane-type triterpenoids are a rare group of terpenoids with a 6,6,5-tricyclic ring system, and a few malabaricane triterpene synthases have been characterized to date. Here, an arabidiol synthase AmAS for the formation of the malabaricane-type 6,6,5-tricyclic triterpenoid skeleton in astramalabaricosides biosynthesis was characterized from Astragalus membranaceus. Multiple sequence alignment, site-directed mutagenesis, and molecular docking of AmAS reveal that residues Q256 and Y258 are essential for AmAS activity, and the triad motif IIH725-727 was the critical residue necessary for its product specificity. Mutation of IIH725-727 with VFN led to the formation of seven tricyclic, tetracyclic, and pentacyclic triterpenoids (1-7). Glycosylation of malabaricane-type triterpenoids in the biosynthesis of astramalabaricosides was also explored. Three triterpenoids (1, 5, and 6) displayed potent inhibitory effects against influenza A virus in vitro. These findings provide insights into malabaricane-type triterpenoids biosynthesis in A. membranaceus and access to diverse bioactive triterpenoids for drug discovery.


Assuntos
Astragalus propinquus , Triterpenos , Simulação de Acoplamento Molecular , Triterpenos/farmacologia , Triterpenos/química , Triterpenos Pentacíclicos
12.
Virus Res ; 334: 199164, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37379907

RESUMO

Vaccines and drugs are two effective medical interventions to mitigate SARS-CoV-2 infection. Three SARS-CoV-2 inhibitors, remdesivir, paxlovid, and molnupiravir, have been approved for treating COVID-19 patients, but more are needed, because each drug has its limitation of usage and SARS-CoV-2 constantly develops drug resistance mutations. In addition, SARS-CoV-2 drugs have the potential to be repurposed to inhibit new human coronaviruses, thus help to prepare for future coronavirus outbreaks. We have screened a library of microbial metabolites to discover new SARS-CoV-2 inhibitors. To facilitate this screening effort, we generated a recombinant SARS-CoV-2 Delta variant carrying the nano luciferase as a reporter for measuring viral infection. Six compounds were found to inhibit SARS-CoV-2 at the half maximal inhibitory concentration (IC50) below 1 µM, including the anthracycline drug aclarubicin that markedly reduced viral RNA-dependent RNA polymerase (RdRp)-mediated gene expression, whereas other anthracyclines inhibited SARS-CoV-2 by activating the expression of interferon and antiviral genes. As the most commonly prescribed anti-cancer drugs, anthracyclines hold the promise of becoming new SARS-CoV-2 inhibitors.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Antraciclinas/farmacologia , Antivirais/farmacologia , Antivirais/metabolismo
14.
Eur J Med Chem ; 255: 115389, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37120996

RESUMO

The design, synthesis, and biological evaluation of a novel series of HIV-1 protease inhibitors containing pyrrolidines with diverse linkers as the P2 ligands and various aromatic derivatives as the P2' ligands were described. A number of inhibitors demonstrated potent efficacy in both enzyme and cellular assays, as well as relatively low cytotoxicity. In particular, inhibitor 34b with a (R)-pyrrolidine-3-carboxamide P2 ligand and a 4-hydroxyphenyl P2' ligand displayed exceptional enzyme inhibitory activity with an IC50 value of 0.32 nM. Furthermore, 34b also exhibited robust antiviral activity against both wild-type HIV-1 and drug-resistant variant with low micromolar EC50 values. In addition, the molecular modelling studies revealed the extensive interactions between inhibitor 34b and the backbone residues of both wild-type and drug-resistant HIV-1 protease. These results suggested the feasibility of utilizing pyrrolidine derivatives as the P2 ligands and provided valuable information for further design and optimization of highly potent HIV-1 protease inhibitors.


Assuntos
Inibidores da Protease de HIV , HIV-1 , Relação Estrutura-Atividade , Ligantes , Cristalografia por Raios X , Pirrolidinas/farmacologia , Protease de HIV/metabolismo , Desenho de Fármacos
15.
Int Immunopharmacol ; 118: 109993, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36931170

RESUMO

As the principal ligand of programmed death 1 (PD-1), PD-L1 can induce the exhaustion of effector T cells and the escape of cancer cells through interacting with PD-1 in many solid malignancies. Therefore, targeting the PD-1/PD-L1 axis has become an attractive strategy in cancer immunotherapy. However, at present, no small-molecule agents targeting PD1/PD-L1 pathways have been successfully used in clinical applications. Here, we first found that the natural product Triptolide could significantly reduce the PD-L1 expression on the surface of NSCLC cells. This down-regulation is related to the activity of EGFR signaling pathway. Moreover, the reduction of PD-L1 caused by Triptolide could be substantially rescued by IFN-γ. Furthermore, our findings suggest that Triptolide significantly inhibits the activity of the IFN-γ-JAK-STAT-IRF1 signaling axis, as evidenced by the noticeable reduction in both basal and phosphorylated levels of STAT3. Thus, in NSCLC cells, Triptolide reduces PD-L1 expression both through the EGFR and IFN-γ/JAK1/JAK2/STAT1/STAT3/IRF1 signaling pathways. The results provide new insights into the application of Triptolide in the immune checkpoints treatment of NSCLCs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Linhagem Celular Tumoral , Interferon gama/metabolismo , Transdução de Sinais , Receptores ErbB/metabolismo , Fator Regulador 1 de Interferon/metabolismo
16.
Biomed Pharmacother ; 158: 114213, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36916436

RESUMO

The rapid emergence of highly transmissible SARS-CoV-2 variants poses serious threat to the efficacy of vaccines and neutralizing antibodies. Thus, there is an urgent need to develop new and effective inhibitors against SARS-CoV-2 and future outbreaks. Here, we have identified a series of glycopeptide antibiotics teicoplanin derivatives that bind to the SARS-CoV-2 spike (S) protein, interrupt its interaction with ACE2 receptor and selectively inhibit viral entry mediated by S protein. Computation modeling predicts that these compounds interact with the residues in the receptor binding domain. More importantly, these teicoplanin derivatives inhibit the entry of both pseudotyped SARS-CoV-2 Delta and Omicron variants. Our study demonstrates the feasibility of developing small molecule entry inhibitors by targeting the interaction of viral S protein and ACE2. Together, considering the proven safety and pharmacokinetics of teicoplanin as a glycopeptide antibiotic, the teicoplanin derivatives hold great promise of being repurposed as pan-SARS-CoV-2 inhibitors.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Teicoplanina/farmacologia , Teicoplanina/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Internalização do Vírus , Glicoproteína da Espícula de Coronavírus/metabolismo , Ligação Proteica , Antibacterianos/farmacologia
17.
Acta Pharm Sin B ; 13(1): 256-270, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36815048

RESUMO

Oxalicine B (1) is an α-pyrone meroterpenoid with a unique bispirocyclic ring system derived from Penicillium oxalicum. The biosynthetic pathway of 15-deoxyoxalicine B (4) was preliminarily reported in Penicillium canescens, however, the genetic base and biochemical characterization of tailoring reactions for oxalicine B (1) has remained enigmatic. In this study, we characterized three oxygenases from the metabolic pathway of oxalicine B (1), including a cytochrome P450 hydroxylase OxaL, a hydroxylating Fe(II)/α-KG-dependent dioxygenase OxaK, and a multifunctional cytochrome P450 OxaB. Intriguingly, OxaK can catalyze various multicyclic intermediates or shunt products of oxalicines with impressive substrate promiscuity. OxaB was further proven via biochemical assays to have the ability to convert 15-hydroxdecaturin A (3) to 1 with a spiro-lactone core skeleton through oxidative rearrangement. We also solved the mystery of OxaL that controls C-15 hydroxylation. Chemical investigation of the wild-type strain and deletants enabled us to identify 10 metabolites including three new compounds, and the isolated compounds displayed potent anti-influenza A virus bioactivities exhibiting IC50 values in the range of 4.0-19.9 µmol/L. Our studies have allowed us to propose a late-stage biosynthetic pathway for oxalicine B (1) and create downstream derivatizations of oxalicines by employing enzymatic strategies.

18.
Elife ; 122023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36656639

RESUMO

In patients with castration-resistant prostate cancer (CRPC), clinical resistances such as androgen receptor (AR) mutation, AR overexpression, and AR splice variants (ARVs) limit the effectiveness of second-generation antiandrogens (SGAs). Several strategies have been implemented to develop novel antiandrogens to circumvent the occurring resistance. Here, we found and identified a bifunctional small molecule Z15, which is both an effective AR antagonist and a selective AR degrader. Z15 could directly interact with the ligand-binding domain (LBD) and activation function-1 region of AR, and promote AR degradation through the proteasome pathway. In vitro and in vivo studies showed that Z15 efficiently suppressed AR, AR mutants and ARVs transcription activity, downregulated mRNA and protein levels of AR downstream target genes, thereby overcoming AR LBD mutations, AR amplification, and ARVs-induced SGAs resistance in CRPC. In conclusion, our data illustrate the synergistic importance of AR antagonism and degradation in advanced prostate cancer treatment.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Masculino , Humanos , Receptores Androgênicos/metabolismo , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Transdução de Sinais , Antagonistas de Receptores de Andrógenos/farmacologia , Antagonistas de Receptores de Andrógenos/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Nitrilas/farmacologia , Nitrilas/uso terapêutico
19.
J Antibiot (Tokyo) ; 76(2): 88-92, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36536084

RESUMO

The crude extract of the Arctic fungus Phoma muscivora CPCC 401424 displayed anti-influenza A virus activities which led us to investigated their secondary metabolites. Four new chromone derivatives, phomarcticones A-D (1-4) and five known chromone analogs (5-9) have been isolated from Arctic fungus Phoma muscivora CPCC 401424. Compounds 3 and 4 possess rare sulfoxide groups in chromone derivatives. Their structures and absolute configurations were elucidated by extensive analysis of spectroscopic data, electronic circular dichroism, and comparison with reported data. Compounds 3, 7, and 9 showed significant anti-influenza A virus activities with the IC50 values of 24.4, 4.2, and 2.7 µM, respectively.


Assuntos
Antivirais , Cromonas , Antivirais/química , Cromonas/farmacologia , Cromonas/química , Fungos , Dicroísmo Circular , Estrutura Molecular
20.
Bioorg Chem ; 130: 106265, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36417826

RESUMO

Zika virus (ZIKV) infection could cause severe neurological complications such as neonatal microcephaly, Guillain-Barré syndrome, and myelitis in adults. No vaccine or therapeutic drug is available for prevention and control of ZIKV infection yet. Based on previously reported anti-ZIKV hit compound 1, a series of novel N-benzoyl or phenylsulfonyl substituted 2-(piperazin-1-yl)methyl-benzonitrile (PMBN) derivatives was designed, synthesized, and investigated for the antiviral activity against ZIKV replication in different cell-based phenotypic assays. The results indicated that N-phenylsulfonyl-PMBN derivative 24 displayed the comparable antiviral activity and higher oral availability than hit compound 1. Meanwhile, mechanism of action study confirmed that compound 24 acts on the early entry stage of ZIKV life cycle. The identification of this new ZIKV entry inhibitor chemotype provided a promising lead for further optimization to develop new drug for ZIKV infection.


Assuntos
Inibidores da Fusão de HIV , Infecção por Zika virus , Zika virus , Humanos , Infecção por Zika virus/tratamento farmacológico , Internalização do Vírus , Antivirais/farmacologia , Antivirais/uso terapêutico , Piperazina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...